A quasi-optimal a priori error estimate for the two-dimensional Signorini problem approximated by linear finite elements
نویسندگان
چکیده
منابع مشابه
An Error Estimate for the Signorini Problem with Coulomb Friction Approximated by Finite Elements
The present paper is concerned with the unilateral contact model and the Coulomb friction law in linear elastostatics. We consider a mixed formulation in which the unknowns are the displacement field and the normal and tangential constraints on the contact area. The chosen finite element method involves continuous elements of degree one and continuous piecewise affine multipliers on the contact...
متن کاملOptimal A Priori Discretization Error Bounds for Geodesic Finite Elements
We prove optimal bounds for the discretization error of geodesic finite elements for variational partial differential equations for functions that map into a nonlinear space. For this we first generalize the well-known Céa lemma to nonlinear function spaces. In a second step we prove optimal interpolation error estimates for pointwise interpolation by geodesic finite elements of arbitrary order...
متن کاملAn Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملA quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem
Solutions of the so-called prescribed curvature problem minA⊆Ω PΩ(A)− ∫ A g(x), g being the curvature field, are approximated via a singularly perturbed elliptic PDE of bistable type. For nondegenerate relative minimizers A ⊂⊂ Ω we prove an O( 2| log |2) error estimate (where stands for the perturbation parameter), and show that this estimate is quasi-optimal. The proof is based on the construc...
متن کاملAn Optimal Uniform a Priori Error Estimate for an Unsteady Singularly Perturbed Problem
We focus ourselves on the analysis of the solution of unsteady linear 2D singularly perturbed convection–diffusion equation. This type of equation can be considered as simplified model problem to many important problems, especially to Navier– Stokes equations. The space discretization of such a problem is a difficult task and it stimulated development of many stabilization methods (e.g. streaml...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2012
ISSN: 1631-073X
DOI: 10.1016/j.crma.2012.01.024